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16.1. Introduction

Historically, dynamics was bedevﬂled from its begmmng by the in-
visibility of space and time. Newton (1686) championed the view that
space and time, although invisible, do exist and provide the arena within
which motion occurs. Leibniz (1716) argued that there is no such thing as
absolute space but only the relative configurations of simultaneously
existing bodies and that time is merely the succession of such instan-
- taneous configurations and not something that flows quite independently
of the bodies in the universe and their motion. What Leibniz was
advocating was that dynamics should be based exclusively on observable
elements; 1t should not contain elements that are not in principle directly
observable. This, of course, was Mach’s standpoint too (Mach 1872),

which Einstein (1916) adopted wholeheartedly when developing general
relativity.

Quantum mechanics (QM) inherited the kinematic structure of New-
tonian dynamics. Its most fundamental operators—those of momentum,
angular momentum, and energy—correspond, respectively, to displace-
ment and rotation in Newton’s invisible space and displacement in
invisible time. The aim of this paper is to question the extent to which the
existing framework of QM is appropriate for quantization of Einstein’s
theory of general relativity (GR). It will be pointed out that the use of
absolute space and time in Newtonian dynamics leads to a characteristic
- tailure of predictive power. A simple theory of dynamics (gauge-invariant
dynamics) will then be discussed that uses only directly observable
quantities and does not suffer from this failure of predictive power. It will
then be shown that GR has essentially the same structure as gauge- -
invariant dynamics. Finally, it is argued that for this reason it may not be
appropriate to attempt to quantlze GR within the existing framework of
QM. |
In his introduction to the discussion meeting, Roger Penrose point'ed
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out that hitherto the attempts to quantize GR have tended to regard QM
as sacrosanct and have sought to make GR fit QM. He wondered
whether, in view of the failure of this approach, the time had not come to
look at the possibility of modifying QM. This paper is a contribution in
that direction.

~ 16.2. Predictive power of classical dynamics

The points raised in this paper can be illustrated by a Gedanken-
experiment: suppose two successive ‘snapshots’ are taken of a universe of
n material points (with known masses m;, i =1,...,n) moving in Eucli-
dean space under gravity in accordance with Newton’s laws. The snap-
shots, which show only the relative distances between the bodies, differ
intrinsically by a small amount, but the separation in time between them
1s not known. Is it p0331ble to predict the future evolution of the system
un1quely‘7

It 1s not. Some essential information is missing. From the relative
distances in the two snapshots, it is impossible to deduce either the
angular momentum or the kinetic energy of the system, but these two
quantities exert a profound influence on the subsequent motion. Poincaré
(1905) found such ‘a failure of predictive power very curious. The
equations of dynamics are of second order in time, so that initial
positions and velocities are required in the initial-value problem. But in
Newtonian dynamics, these quantities must be specified in absolute space -
and time. The purely relative—and observable—quantities do not quite
suffice to determine the absolute quantities. As a result, quite different
futures can evolve from apparently identical initial conditions (cf. Bar-
bour 1982). |

The next section presents a dynamical theory without this cunous
defect.

16.3. Gauge-invariant dynamics

Because the magnetic field is always observed to satisfy div B =0, it can
be represented in terms of a vector potential A, B =curl A, with,
however, A determined only up to the gauge transformation

A>A+VY,  y=yk). - (16.1)

Similarly, the n(n—1)/2 observable relative distances between n
(n =5) bodies in Euclidean space satisfy algebraic relations which reduce
the number of independent quantities to 3n — 6. These relations make it
possible to represent the observable data by means of Cartesian coordin-
ates r;. Like the vector potential A, these Cartesian ‘potentials’ are
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determined only up to the six-parameter ‘gauge transformation’
r—ér,+g, (16.2)

where € is an orthogonal 3 X 3 matrix and g 1s a vector.

Imagine a continuous sequence of snapshots of the »n bodies as they
move relative to each other. Each snapshot represents an instant of
Leibnizian time. Label the sequence by an arbitrary monotonically
increasing label 7. Since the gauge of the potentials in each snapshot is
independent of the gauges in the preceding and following snapshots é
and g in transformation (16.2) become arbitrary functlons of 1: -

r(t)— €(v)r(r) + g(7). (16.3)

Note that the gauge group (16.3) is uniquely determined by tho nature
of the (algebraic) relations satisfied by the (observable) relative distances
and the Leibnizian concept of time, accordlng to which the label 7 is 1tself

determined only up to |
-1, 1T =1'(1), dt’'/dt >0, (16.4)

since no time label 7 is distinguished a priori.

If the complete universe is considered, it is not difficult to construct a
dynamical theory invariant under transformations (16.3) and (16.4), which
may be called the Leibniz group (Barbour and Bertotti 1977). Only the
essential features will be given here; the details can be found in Barbour

and Bertotti (1982).

A gauge-invariant action is constructed. Let {r} be an initial con-

figuration and {r!} differ from it infinitesimally: r; =r, + or;. Now, it the
gauge of, say, r; is changed, or; will change too. Let

n

5T =Y my(ér/d1)?, - - (16.5)

i=1

and let 67 be the minihium of eqn (16.5) over all or, obtained by

applying transformation (16.3) to the representation of the second
configuration. Then 8T is uniquely determined by observable quantities

and is gauge invariant.
To obtain the gauge- 1nvar1ant analog of Newtonian grawta’uonal

dynamics, let |

i<j
and consider the variational principle

o1=0, 1= [(vT)yadr, O (166)
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where the product form and the square root are taken in order to ensure
that the integrand of eqn (16.6) is homogeneous of degree one and
therefore invariant with respect to (16.4).

It 1s easy to show that the physically distinct solutions of eqn (16.6) are
identical to the solutions of Newtonian gravitational dynamics for. which
the considered n-body universe has angular momentum about the centrfe
of mass equal to zero and, in addition, zero total energy. These results
are consequences of the invariance of eqn (16.6) with respect to trans-
formations (16.3) and (16.4), respectively, or, as Bertotti and I put it,

implementation of the First and Second Mach’s Principles (Barbour
and Bertotti 1982).

16.4. Two different concepts of motion

In the Newtonian concept of motion, each body moves primarily in the
arena of absolute space and time, and only secondarily with respect to
other bodies, the interactions with which give rise to deviations from the
basic uniform rectilinear inertial motion. In the Leibnizian view, there is
just a sequence of snapshots Space and time are to be constructed from
the observable data in the snapshots, which can be regarded as lying
initially in a random heap.

Except in uninteresting degenerate cases, the presumed continuity of
the changes of the relative configurations will permit a unique ordering of
the sequence. After this, it is possible to stack horizontally. This is
essentially the operation that occurs in the minimization of eqn (16.5).
Take the first snapshot, place the second on top of it, and move the
second around on the top of the first until eqn (16.5) is minimized. This
will happen when: (1) the centres of mass coincide, (2) there is no overall
rotation. This is what causes the total angular momentum to vanish. The
third snapshot can then be stacked relative to the second, the fourth
relative to the third, and so forth. The ‘complete sequence is thus ordered
and stacked horlzontally |

To stack wvertically, i.e., to determine a separation in ‘time’ between

successive snapshots, we use the equatlons of motion deduced from eqn
(16.6):

d (VW dr,-) 1775y

dr\7T"2d7/ 2V or (16'7)_.

(see Barbour and Bertotti (1982); the horizontal stacking is assumed

-already performed). Up to its origin, there is a unique choice of the label

T, which is still arbitrary in eqn (16.7), that casts eqn (16.7) into an
especnally 51mple form. Namely, choose t such that

TI/Z._.. V1/2 | | | (16.8)
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Then: (1) with respect to 7, the bodies now follow Newton’s laws exactly.
By virtue of the horizontal stacking, bodies subject to no forces move
along straight lines; by virtue of the vertical stacking, they now move
~uniformly as well. As Poincaré (1905) asserted, ‘time’ is chosen so as to
put the equations of dynamics into simplest form. (2) The determination
of the distinguished time simultaneously defines an ‘energy’ of the

system, which however is exactly zero (V is minus the usual Newtonian

potential energy).
To summarize: to formulate gauge-invariant dynamics, it is not
necessary to presuppose absolute -space and time. Instead, they are

constructed after the dynamical problem has been solved using observ-

able relative data. It is necessary to consider the entire universe, which,

after horizontal and vertical stacking, is necessarily found to have

vanishing energy and angular momentum as a consequence of the
gauge-nvariant dynamics. However, well separated subsystems of the
universe can perfectly well have non-vanishing values of these para-
meters. When applied to the complete universe, gauge-invariant dynam-
ics 1s full rational in the sense required by Poincaré, i.e. seemingly
idéntical initial data cannot give rise to quite different dynamical
evolutions. | |

Kretschmann (1917) argued that Einstein’s principle of general covari-
ance has only methodological but not physical significance. For example,
Newtonian dynamics can also be made invariant with respect to transfor-
mations (16.3) and (16.4) and, like gauge-invariant dynamics, be treated
in a frame of reference in arbitrary motion. But this formal invariance—I
shall call it Kretschmann invariance—is only possible at the price of the
introduction of additional (and unobservable) elements. In contrast, the
gauge 1nvariance of Section 16.3 is achieved minimally. The Leibniz
group (16.3) and (16.4) is unambiguously determined by the structure
observed within each snapshot and by the concept of time. The minimal
gauge invariance enhances the predictive power; Kretschmann invariance

adds nothing.

16.5. General relativity as a generalization of gauge-invariant dynamics

Gauge-invariant dynamics solves the problem of determining the future
from observable initial data. Of course, the type of ‘snapshot’, or

‘simultaneity’, can be generalized. For example, the snapshot might show

the instantaneous values of a field or the distance relations that hold in a
closed three-dimensional Riemannian space. Let us consider the latter
case. Instead of the Cartesian ‘potentials’ r;, the ‘potential’ in this case is

the metric tensor g;, i, j=1, 2, 3, of the Riemannian space. The
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analogue of the gauge group (16.3) is
8i(T)— g;(t) + A7), (16.9)

where A; are three arbitrary functions, the round brackets in the suffix
denote symmetrization, and the semicolon denotes the covariant deriva-
tive with respect to g;. The Leibniz group for this problem is (16.9) and
(16.4), and is not far short of being the general covariance group of four
dimensions, i.e., the invariance group of general relativity. However,
there 1s no mixing of (16.9) and (16.4). |

The reason for (16.4) is that there is nothing intrinsic in any two
snapshots to say how far apart they are ‘in time’. But the division of the
Leibniz group into (16.9) and (16.4) corresponds to the pre-relativistic
notion that absolute simultaneity still has meaning. In the operational
spirit of Section 16.4, this amounts to the assumption that the simplest
form of the equations of motion can be obtained with a single time
parameter, this time parameter being the same across the entire universe. -
In a post-relativistic approach, such a view cannot be maintained: one
must consider the possibility that the separation in ‘time’ between the
snapshots 1s not only unknown but also position dependent in general.
Then (16.9) and (16.4) can no longer be kept separate and it is necessary
to go over to the general covariance group in four dimensions.

Limiting the discussion to pure geometrodynamics (i.e. when no matter
fields are present), the problem therefore is to find a generalization of the
action (16.6). It was shown by Baierlein et al. (1962) that the action
principle of GR can be put in the form . |

S[gz'ja Nk] = fdf deX{R[g]Gijkl[g](gfj — 2N(i;j))(gkl — 2N(k;l))}1/2' | (16-10)

Here, R is the scalar curvature of the three-dimensional Riemannian
spaces, G =3g(g"g" + g*g¥ — 2gg*") is DeWitt’s metric, g = detl|g; ||,
and N, is the shift; g, = dg;/dt; and indices are raised and lowered with
g;. The summation convention is assumed.

The action (16.10) is a generalization of eqn (16.6). The variation with
respect to the shift N, (the ‘thin-sandwich’ problem described by Wheeler
(1964)) is exactly analogous to the horizontal stacking described in
Section 16.4. The shift enters eqn (16.10) in the way it does solely on

account of (16.9). The really distinctive structure of GR dictated by the

mixing of (16.9) and (16.4) into. the four-dimensional covariance group is

reflected by the appearance of DeW_itt’s metric G and the fact that R
multiplies the remainder of the integrand at each point and there is only a
single integral over space. Were invariance only with respect to (16.9)

- and (16.4) separately required, eqn (16.10) could be replaced by a much

less specific expression.
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Once the horizontal stacking has been performed, 1.e., the thin-
sandwich problem has been solved, the vertical stacking is performed by
defining a position-dependent lapse:

N =RV (k' — k)12, - (16.11)

where k; =dg;/dt —2N . This 1s a position dependent generalization
of Pomcares proposition that ‘time’ 1s chosen to make the laws of

dynamics simple.

In gauge-invariant dynamics, the horizontal and vertical stackmg of the

snapshots leads to the construction of absolute space and time. In
geometrodynamics, the ‘heap’ of three geometries is stacked analogously
into a Ricci flat four-dimensional space. Moreover, in allowing arbitrary
position-dependent ‘time’ separation between simultaneities, GR 1s a non
plus ultra as regards predictive power. For this reason, one must agree
with Wheeler (1964) that, at least in the case of a closed universe, GR 1s
a faithful realization of Machian 1deas.

16.6. Quantum mechanics and general relativity

As mentioned in Section 16.1, the attempts to quantize GR have been
made under the assumption that QM has a basic structure with which one
cannot tamper and to which GR must be matched. However, if we
consider what features of Newtonian kinematics are essential to QM and
then realize that gauge-invariant dynamics and GR are constructed in

‘such a way as to eliminate precisely these features, we must question such

an approach.
There are two features of Newtoman kinematics that play an essential

role in QM: the phase space and the distinguished time variable. These
are assumed to exist before any dynamics takes place in them. In the
modern treatment of dynamics, for example, the phase space with its
symplectic form is assumed given. Many different Hamiltonian evolutions
can take place on one and the same phase space. In this view, the
momentum of a particle exists prior to any dynamical law that it may
satisfy. The basic structure of QM is set up prior to the dynamics, just as
absolute space and time are assumed to exist prior to Newton’s laws.

But this is not the case in gauge-invariant dynamics. It is only after the
horizontal and vertical stacking (Section 16.4) that we recover the
‘space—time’ structure that corresponds to the arena provided by New-
tonian absolute space and time. Moreover, the stacking procedure 1s

T Unfortunately, not much is known about the solution of the thin sandwich problem

‘Uniqueness has been proved under certain restrictions by Belasco and Ohanian (1969). This

at least shows that the kind of non-uniqueness inherent in Newtonian dynamics is not
encountered in GR.
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carried out with one specific Lagrangian and the specific system {taken to

represent the entire universe) one is considering. If divorced from these,
a particle can be associated with neither a direction nor a mag,mtude of
momentum.

We have seen that the kinematic structure of one-particle Newtonian
dynamics may well have a Machian origin. It is a small step from this to
the 1dea that some of the most basic features of QM have a Machian
origin too. In particular, there is a suggestive correspondence between
the failure of predictive power in Newtonian dynamics associated with
the ‘invisibility’ of the energy and angular momentum of a system and the
fact that wave packets in QM are constructed by superposition of
eigenfunctions corresponding to different values of the quantum ana-
logues ot these very same quantities. |

Smolin (see Chapter 10) has attempted to derive the one-particle
Schrodinger equation in a many-particle global framework, but otherwise
there seem to have been few attempts made in this direction.

16.7. The Hamiltonian constraints of general relativity

When GR was cast into Hamiltonian form as a preliminary to canonical
quantization (Dirac 1958; Arnowitt et al. 1962), it was found that the
dynamics of GR 1s not controlled by a conventional Hamiltonian but by
so-called Hamiltonian constraints (Dirac (1964); see Kuchaf (1981) for a
modern review and an extensive bibliography). According to Kuchai, the
presence of these constraints ‘incredibly complicates the implementation
of the canonical quantization programme’. In this connection, it is

- interesting to examine the literature to see what attitude the investigators

took to the problem of dealing with these constraints. Overall, the
tendency seems to have been to look for similar constraints in systems
that have already been successfully quantized and hope that these would
give guidance 1n the case of GR. However, the constraints with which
comparisons were made arise from what I have called Kretschmann
invariance (Section 16.4), 1.e., a formal invariance achieved by adding to

‘the original dynamical elements of the theory without in any way Increas-

ing the predictive power of the theory.

This 1s well demonstrated by the so-called super- Hamlltoman con-
straint, which was claimed to be analogous to the constraint that arises in
parametrized particle dynamics (Dirac 1964; Lanczos 1949). This simila-
rity was taken as a guide to the way in which one should attempt to

identify the time variable in the quantization of GR, the point being that

in parametrized particle dynamics ‘time’ is included among the ordinary
dynamical variables, and it was concluded that in GR ‘time’ is hidden
among the dynamical variables, which in the Hamiltonian formulation
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are the components of the spatial metric g;, i, j=1, 2, 3, and the
momenta conjugate to them. However, I want to argue here that the
super-Hamiltonian constraint of GR is rather an indication that there is
no ‘time’ at all in GR. To do this, it will be necessary to consider two
~ different constraints: the one that arises in parametrized particle dynam-
ics and derives from a Kretschmann invariance and the one that arises in
gauge-invariant dynamics and derives from a minimal invariance.
-~ Let %(g;,q:,t), i=1,...,3n, be the Lagrange function of n
Newtonian point particles with kinetic energy 7 and potential energy U.
Parametrize the particle paths by an arbitrary time label 7 (dg;/dt = g;)

and ad]01n the absolute time ¢ =g, to the g,’s. The new Lagrangian

% =%(q, q],t,t')is homogeneous of degree one in the ‘velocities’ g,
and t', so that the action is invariant with respect to (16.4). It is well
known that as a result the Hamiltonian corresponding to £ vanishes
identically (Dirac 1964). To obtain a Hamiltonian description, it is
necessary to introduce a constraint. Namely, the Hamiltonian description
of the parametrized form ot the dynamics is derived from the principle

5l = 0, I= Z mq} — N(mo + H)] dr, (16.12)

where H is the Hamiltonian corresponding to Z' (the ‘physical’ Hamil-
tonian) and m&;=9%/dq;. Variation with respect to the Lagrange
multiplier N gives the constraint

H=m,+H=0. (16.13)

Variation with respect to 7, gives the ‘lapse’
N=t', ~ (16.14)

which remains an arbitrary function not determined by eqn (16.12). This
is what is known as the parametrized form of dynamics. In it, the
absolute time ¢t and —H appear as an extra pair of canonical co-ordinates.
The parameter invariance of eqn (16.12) is a typical Kretschmann
invariance, achieved by adding t and —H to the dynamical variables. The
- predictive power of the theory is unchanged.

Now suppose the system 1s conservative; 1.e. £ does not contain ¢
explicitly. Then ¢ is an ignorable co-ordinate (see Lanczos 1949) and can

be eliminated by the Routhian procedure, gmng Jacob1 S prmmple for

the path in configuration space:
3n |
oJ =0, J= f(E U)”2 "dr, ds?= > m,dg, dg;, (16.15)
j=1 -

where E is the constant total energy: E =T+U. Thns, in eqn (16.15), E
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1s regarded as a constant, but U is configuration dependent. In New-
tonian dynamics, the speed at which the system moves through its
configuration space is found from the energy equation by quadrature
after the ‘orbit’ problem (16.15) has been solved. |

Note that the principle (16.12) yields solutions of the original problem
with all values of the energy, but eqn (16.15) yields only those with the
value E. In particular, if E =0 we recover our result of Section 16.3. Let
us assume this 1s the case. Now the variational principle (16.15) is still
invariant under (16.4), so that the Hamiltonian corresponding to eqn
(16.15) again vanishes. The only way we can obtain a Hamiltonian
description now is to take the action

Z (i — NoH) d. - (16.12)
Variation with respect to NV, gives
ohe Caw rEmue iz =1 (16.13")
and eonsistency-enforees | |
Ny=1. | (16.14")

So far as I know, a super-Hamiltonian constraint like eqn (16.13') has
not hitherto been considered in the literature, though it seems to be more
appropriate for comparison with the constraint in GR. The difference
between eqns (16.13) and (16.13") is made clear by the two-snapshot
initial-value problem considered in Section 16.2 and the distinction made
in Section 16.4 between Kretschmann invariance and minimal invariance.
The variables which occur in eqn (16.13) are heterogeneous. Namely, the
momenta corresponding to the ordinary dynamical variables are all
directly observable (we can assume for the sake of the discussion that the
horizontal stacking has already been performed) whereas the momentum
corresponding to the time variable (—H) is not observable. For given
values of the remaining (observable) dynamical variables, the numerical
value of H 1s undetermined. This is true in both the conservative and the
non-conservative case, and it corresponds to the one-parameter uncer-
tainty in the dynamical evolution from observable initial conditions noted

1n Section 2. In contrast, in eqn (16.13") there is no such time variable.

All the variables are observable, and the future is uniquely determined
by the observable data. Since GR shares this property with gauge-
invariant dynamics, one must consider the possibility that the attempt to -
find a ‘time’ variable in GR is misconceived. |

As an alternative, one could at least look at the quantization of the
simplest problem in gauge-invariant dynamics that has constraints of the
same intrinsic structure as GR: the three-body problem of celestial
dynamics in the centre-of-mass frame with vanishing total angular
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momentum (analogue of the super-momentum constraint) and zero total
“energy (super-Hamiltonian constraint). In particular, if a ‘time’ is to be
found among the ordinary dynamical variables, it will have to be
constructed from among the genuine observables of the system, 1.e. the
three relative distances between the bodies (thus, ‘time’ could be either
the perimeter or the area of the triangle formed by them). This makes it
clear that quantization of GR differs in a fundamental way from the
quantization of all other systems hitherto considered, a fact that has
perhaps been obscured rather than 111um1nated by formal Kretschmann-

type analogies.

Acknowledgements |

EspeCIal thanks to Karel Kuchaf for many recent discussions. Thanks also for earlier
discussions to H. Goenner, D. Liebscher, D. Raine, L. Smolin, and above all Bruno
Bertotti, with whom many of these ideas were developed. I also thank A. Ashtekar for

discussing some unpublished notes on this subject.

References

Arnowitt, R., Deser, S., and Misner, C. W. (1962). In Gravitation: an
introduction to current research (ed. L. Witten). John Wiley, New York.

Baierlein, R. F., Sharp, D. H., and Wheeler, J. A. (1962). Phys. Rev. 126,
1864-5.

Barbour, J. B. (1982) Br. J Phil. Sci. 33, 251-74.

and Bertotti, B. (1977). Nuovo Cimento B 38, 1-27.

(1982). Proc. R. Soc. Lond. A 382, 295-306.

Belasco, E. P. and Ohanian, H. C. (1969). J. Math. Phys. 10, 1503-7.

Dirac, P. A. M. (1958). Proc. R. Soc. Lond., A 246, 326-43. |

(1964). Lectures on quantum mechanics Belfer Graduate School ot Physics,
Yeshiva University, New York. |

Einstein, A. (1916). Ann. Phys., Lpz. 49, 769-822. (Engl. transl. in The
principle of relativity). Dover, New York, (1952). |

Kretschmann, E. (1917). Ann. Phys., Lpz. 53, 575-614.

Kuchat, K. (1981). In Quantum gravity 2, a second Oxford symposium (ed. C. J.
Isham,; R. Penrose, and D. W. Sciama). Oxford University Press, Oxford.

Lanczos, C. (1949). The variational principles of mechanics. Toronto University

- Press, Toronto.

Leibniz, G. W. (1716) in The Leibniz—Clarke correspondence (ed H. H.
Alexander) Manchester University Press, Manchester (1956), p. 69.

Mach, E. (1872). Die Geschichte und die Wurzel des Satzes von der Erhaltung der
Arbeit. (Engl. transl. History and root of the principle of conservation of
energy. Open Court, Chicago 1911). (See also Mach E. (1960) The science of
mechanics. Open Court, La Salle.)

Newton, Sir Isaac (1686). Philosophiae naturalis principia mathematica.

Poincaré, J. H. (1905). Science and hypothesis Walter Scott, London.

Wheeler, J. A. (1964). In Relativity, groups and topology (ed. B. DeWitt and C
DeWitt). Gordon and Breach New York. |

17

Quantum time-space and gravity

David Finkelstein and Ernesto Rodriguez

. 17.1. Introduction |

It 1s far-fetched to describe quantum gravity by a quantum (q) pseudo-

- metric tensor g depending on classical (¢) coordinates x, a theory we call

here cq for its hybrid classical-quantum nature. After all, consider how
we determine these variables.

We may determine coordinates of an event by four explosions which
hurl good clocks 1n all possible directions at all possible speeds. The four
readings on the four clocks that reach an event are its coordinates.

We may determine the interval between events by setting off a similar
explosion at one event; the reading on the clock that reaches the other
event 1s the interval. |

It would be arbitrary to say that the four variables resulting from the
first procedure are c-numbers, while that from the second would be a
g-number. The cq theory does not go so far; it claims that because the
shrapnel consists of clocks, it acquires a quantum indeterminacy from the
gravitational field. Were the shrapnel charged, it would pick up the
quantum nature of the electromagnetic field it traverses as well. To
determine c¢ coordinates, some reliable and continuous number-
generators insensitive to gravity and any other q field must replace the
clocks. This still seems far-fetched, in view of the universal coupling to
gravity. Gravity determines propagation and the characteristic surfaces of
all other fields.

It seems more likely that grav1ty and its light cones reflect a fundamen-
tal microscopic structure of time space, and that the q nature of gravity
derives from that of this microstructure. | ‘

In the c theory, the co-ordinates belong to the level of the manifold,

the third level in the hierarchy of theories of Table 17.1. The usual (cq)

theory of fields, applied to gravity, assumes that the first three levels are C
and the last three are q. We have been exploring a physics which is q all
the way down, with a q correspondent for each of these levels. We report

(Sections 17.2 and 17.3) on the present state of our ¢ gravity. One

problem we all have is giving meaning to a psi vector for the universe.
We explain (Section 17.4) how and why we do not do this.



